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Abstract-In finite-element models of fault-bend folds, viscous and plastic material properties are used to 
simulate pressure solution creep and cataclasis, respectively. Plastic deformation occurs primarily above ramp 
hinges. However, a band of high plastic strain is created in the lower hanging wall as material moves over the 
ramp hinges. Viscous deformation dominates above the ramp and flats, where plastic deformation is negligible. 
Hanging-wall material undergoes layer-parallel shortening on the lower flat and lower part of the ramp, layer- 
parallel extension on the upper part of the ramp and upper flat, and layer-parallel shortening farther along the 
upper flat. The stress invariant dJ$ is highest above the ramp hinges and below the ramp, whereas stress 
invariant J, is highest above and below the ramp. The high J, below the ramp suppresses plastic deformation, so 
that footwall deformation is predominantly viscous. In multilayer models, strain is concentrated in the weak 
layers, especially on the limbs of the hanging-wall anticline. In models with bedding-parallel slip surfaces in the 
hanging wall, the strain on fold limbs is accommodated by interlayer slip, and layers between slip surfaces 
develop individual neutral surfaces. The models indicate that the relative and absolute amounts of deformation in 
fault-bend folds resulting from pressure solution creep and cataclasis vary as a function of structural position and 
history. 

INTRODUCTION 

The nature and history of rock deformation during 
movement over thrust-fault ramps (Fig. 1) have been 
investigated using mechanical and kinematic models 
(e.g. Berger & Johnson 1980, Suppe 1983) as well as 
field observations (e.g. Wiltschko et al. 1985, Kilsdonk 
& Wiltschko 1988). Because existing models commonly 
use either no material properties or simple material 
properties, it is difficult or inappropriate to compare the 
results of these models directly with natural rock defor- 
mation. In an attempt to link more closely model results 
and field observations, the finite-element models pre- 
sented here use material properties chosen specifically 
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Fig. 1. Schematic drawing of a fault-bend fold, showing the termino- 
logy used in this paper (after McClay 1992). In this paper, the terms 
ramp, ramp hinge and flat refer to footwall ramp, ramp hinge and flat. 

c$ and db arc the forelimb and backlimb dips. 

to simulate the deformation mechanisms in low- 
temperature sedimentary rocks. 

Kinematic models of fault-bend folding (Sanderson 
1982, Suppe 1983, Johnson & Berger 1989) assume 
flexural-slip or flexural-flow folding during movement 
over a rigid footwall in order to simulate the develop- 
ment of a hanging-wall anticline (Rich 1934). Because 
layer thickness is constant in most of these kinematic 
models, there is layer-parallel slip or layer-parallel shear 
strain but no layer-parallel shortening or extension. 
Analytical and numerical models also have been used to 
simulate deformation at a ramp. Berger & Johnson 
(1980) model ramp anticline development above a rigid 
footwall using a linear viscous material, with constant 
friction along the ramp and frictionless flats. They show 
that fault friction leads to thickening of the hanging wall 
above the lower ramp hinge and an increase in fold 
asymmetry. Wiltschko (1979, 1981) uses a linear vis- 
cous, anisotropic material and a rigid, smooth footwall 
ramp, and assumed neutral-surface bending of the hang- 
ing wall. As material in the lower hanging wall moves 
over the ramp of this model, it is horizontally extended, 
then shortened and then extended again. Kilsdonk & 
Fletcher (1989) include a deformable footwall in a model 
of linear viscous half-spaces separated by a frictionless 
surface with a ramp-flat geometry, a model that pro- 
duces horizontal shortening in the hanging wall at the 
lower ramp hinge and horizontal extension at the upper 
ramp hinge. In this model, the ramp maintains its initial 
shape but translates toward the foreland. Using an 
elastic-perfectly plastic finite-element model with a 
deformable footwall, Apperson & Goff (1991) and 
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Apperson (1993) find that the flattening and foreland- 
ward translation of a ramp and the associated defor- 
mation beneath the ramp are functions of initial ramp 
angle and material strength. 

Low-temperature sedimentary rocks deform at the 
microscale and mesoscale by fracture, faulting, bedding- 
plane slip, pressure solution and intracrystalbne plasti- 
city (e.g. Groshong 1988). Observations of deformation 
adjacent to natural ramps indicate a significant contri- 
bution by all of these processes to hanging-wall defor- 
mation Wiltschko et al. (1985) determine the timing of 
deformation mechanisms in the ramp region of the Pine 
Mountain thrust sheet of Tennessee to be layer-parallel 
shortening by pressure solution and twinning of calcite, 
followed by transport-perpendicular extension frac- 
tures, bedding-plane slip, and slip on mesoscopic faults. 
Kilsdonk & Wiltschko (1988) differentiate strain associ- 
ated with layer-parallel shortening (twinning of calcite, 
transport-parallel extension fractures, transport- 
perpendicular stylolites and thrust faults) and later 
strain associated with bending (twinning of fracture fill, 
transport-perpendicular extension fractures, and nor- 
mal faults). In addition to the hanging-wall deformation 
at ramps, there is also significant footwall deformation 
before and during thrust-fault motion (Fischer & Cow- 
ard 1982, Protzman & Mitra 1990, Evans & Neves 1992) 
by brittle and plastic mechanisms. 

The constitutive laws of a linear viscous fluid approxi- 
mate those of a rock deforming by pressure solution 
creep (Rutter 1976), whereas pressure-dependant plas- 
ticity best characterizes deformation by fracture and 
cataclasis (Rudnicki & Rice 1975, Fletcher 1987). In the 
models presented below, we use viscous and pressure- 
dependant plastic material properties to model pressure 
solution creep and cataclasis, respectively. Although 
twinning and dislocation motion are important in some 
upper-crustal rocks, we have not included material 
properties to model these deformation mechanisms. 
Some of the models also incorporate mechanical layer- 
ing and interlayer slip, both of which are important in 
the deformation of sedimentary sequences at upper- 
crustal conditions. These models simulate evolving fold 
geometry, as well as the sequence of deformation mech- 
anisms during movement over a ramp, which can be 
compared with natural deformation. 

FINITE-ELEMENT MODELS 

The finite-element models presented here use a large- 
displacement, finite-strain Eulerian formulation and 
material properties that include both an elastic-plastic 
component and a viscous creep component. The plastic 
component is governed by a Drucker-Prager yield cri- 
terion (Drucker & Prager 1952) 

F=aJ,+dJ;, (1) 

with an associated flow rule. a is a coefficient of pressure 
dependence, Ji is the first invariant of stress, 

J1 = Uii, 

and J; is the second invariant of deviatoric stress 

J; = 1/24a,$ 

where 

and 

6, = 1 if i = j, 6, = 0 if i #j. 

(2) 

(3) 

(4 

(5) 

As a measure of the plastic deformation, we use equival- 
ent plastic strain $’ (Hill 1950), which, after y1 incre- 
ments, is 

n 
rP = 

c 
Wi > (6) 

k=l 

where 

deR = [ (2/3) d$ dc$2. (7) 

Viscous strain is described by a linear relation between 
stress and deformation rate, 

where i$ is the viscous deformation rate and q is the 
coefficient of viscosity. An equivalent viscous strain F” 
can be defined that is analogous to equivalent plastic 
strain. Both Ep and E” are monotonically increasing 
internal state variables. Note that the plastic component 
of strain depends on J1 but the viscous component does 
not. Also, the viscous component of strain is active for 
any non-zero value of o~j, but plastic strain occurs only if 
the yield criterion (equation 1) is attained. 

Each model contains 462 isoparametric, quadratic 
elements, which are initially either 100 m X 200 m or 200 
m x 200 m (Fig. 2). Plane strain is assumed. The fault 
surface is composed of friction-contact spring elements, 
and the initial fault geometry consists of a ramp connect- 
ing lower and upper flats. The ramp is 500 m high and 
1000 m long, producing a ramp angle of 26.5”, and the 
upper and lower hinges of the ramp are rounded. A 
surface pressure of 75 MPa is applied to the top of the 
model and the right side of the hanging wall, which 
simulates a 3 km overburden. There is zero shear stress 
along this top surface of the model. A zero displacement 
boundary condition, u, = uY = 0, is used along the left 
(hinterland) side of the footwall, uY = 0 along the base of 
the model and U, = 0 along the right (foreland) side of 
the footwall. A displacement of 25 m per 2500 y time 
step is imposed on the left side of the hanging wall, a 
velocity (1 cm y-‘) that is consistent with estimates of 
natural thrust sheet motion (Wiltschko & Dorr 1983). 
The models are run to a maximum displacement of the 
left side of the model of 2.5 km (100 time steps). In most 
models, the friction coefficient along the fault is ,& = 
0.01. Low friction coefficients along the fault are necess- 
ary, for the ramp angle used, to minimize internal 
deformation relative to fault slip. Five sets of material 
properties are used to simulate strong, moderate, and 
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Fig. 2. Initial, undeformed grid for the finite-element model, showing boundary conditions. 

Table 1. Material properties used in the models. Numbers in the fourth column are stress-strain slopes for values of 
stress above that in the third column, defining a piecewise linear curve 

Material Description 
Yield strength 

(MW 
Stress-strain slope 

WW 
Viscosity coefficient 

q(x1d’Pa.s) 

I Strong 
Viscous-plastic 

II Moderate 
Viscous-plastic 

III Weak 
Viscous-plastic 

IV Plastic 

V Weak viscous 

27 2300 5.0 
29 350 
31 60 

27 2300 2.9 
29 350 
31 60 

10 2300 1.5 
12 350 
14 60 

27 2300 - 
29 350 
31 60 

- - 1.5 

Table 2. Model descriptions and material properties (see Table 1 for material descriptions). The forelimb 
and backlimb dips, 6, and S, are the maximum dips after 2.5 km displacement, measured at the stratigraphic 

horizon that is initially midway up the ramp 

Model Description Material fJf Bb 

A 
B 
C 
D 
E 

F 

G 
H 

Uniform viscous-plastic 
Uniform plastic 
Uniform viscous 
Uniform viscous-plastic with rigid footwall 
Two-layer; strong lower hanging wall and footwall, 
weak upper hanging wall; frictionless fault 
Two-layer; strong lower hanging wall and footwall, 
weak upper hanging wall; frictional fault 
Multilayer; six layers, alternating weak and strong 
Interlayer slip along three surfaces in hanging wall 

II 32” 21” 
IV 32” 19” 
V 39” 24” 
II 30” 22” 
I/III 29” 23 

I/III 38 22” 

I/III 31” 22” 
II 29” 26” 

weak viscous-plastic materials, as well as viscous and 1971, Turcotte & Schubert 1982). However, because 
plastic materials (Table 1). All materials have density p strength decreases with increasing sample size (Jaeger & 
= 2500 kg rnp3, Young’s modulus E = 3 x lo4 MPa, Cook 1971, Paterson 1978), the yield strengths used in 
Poisson’s ratio v = 0.25 and pressure-dependence coef- the models are less than those determined from experi- 
ficient a = 0.2 (equivalent to an internal friction coef- mental deformation of small samples. In our models, the 
ficient of 0.28). Material properties were chosen that relationship between stress and plastic strain is piece- 
produce a realistic deformed geometry (minimal separ- wise linear, and hardening of the yield surface is isotro- 
ation and deformation of the fault surface). These pic. The plastic yield surface undergoes a minor amount 
properties are generally consistent with experimentally of strain hardening, consistent with experimental defor- 
determined properties of carbonate rocks (e.g. Johnson mation. The eight models presented here (Table 2) 
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investigate the effects of viscous vs plastic deformation, 
shallowing of the ramp by footwall deformation, friction 
on the fault, mechanical layering, and interlayer slip in 
the hanging wall. 

RESULTS 

Partitioning of viscous and plastic strain 

Model A (Table 2) contains a hanging wall and foot- 
wall with uniform viscous-plastic material properties. 
Throughout most of the model evolution, VJ; is highest 
above the ramp hinges, although the maximum above 
the lower ramp hinges moves up the ramp during the late 
stages of the model (Fig. 3a). Maxima in VJ; also 
develop below the ramp and in the upper forelimb of the 
hanging-wall anticline. J, is highest immediately above 
and below the ramp (Fig. 3b). Incremental plastic strain 
occurs above the ramp hinges (Fig. 4a). As a conse- 
quence of movement of the hanging wall over the ramp 
hinges, a relatively uniform band of high equivalent 
plastic strain is created, which extends from 200-800 m 
above the fault. Equivalent viscous strain is highest in 
the backlimb and lower hinge of the hanging-wall anti- 
cline and beneath the ramp (Fig. 4b). Layer-parallel 
shortening develops in the backlimb and hinge of the 
hanging-wall anticline and in the inner arcs of the lead- 
ing and trailing synclines. Layer-parallel extension de- 
velops in the outer arcs of both the hanging-wall 
anticline and the leading syncline. The hanging-wall 
anticline is slightly asymmetric, with a steeper forelimb 
than backlimb (Table 2). Footwall deformation, which is 
almost entirely viscous, produces a gentle footwall syn- 
cline beneath the ramp and causes uplift of the upper 
flat. As deformation proceeds, the upper ramp hinge 
translates towards the foreland relative to the lower 
ramp hinge, causing the ramp dip to decrease. 

By following individual particles, stress paths in J 
space (Jamison 1993) and equivalent plastic and viscous 
strain histories can be tracked. Plastic strain accumu- 
lates only when the stress state is on the yield surface. 
Because we use a strain-hardening plastic material, the 
yield surface moves upward in J space as plastic strain 
accumulates, although only the initial yield surface is 
shown (Fig. 5). Viscous strain occurs for any non-zero 
value of VJ;. A particle in the lower hanging wall 
(particle a; Fig. 5) undergoes viscous horizontal shorten- 
ing over the lower flat. As the particle passes over the 
lower ramp hinge, its stress path contacts the yield 
surface and it undergoes plastic horizontal shortening. 
When the particle is above the ramp, the stress state falls 
below the yield surface because of increasing J1 and 
decreasing dJ$ and, thus, further plastic strain tempor- 
arily ceases. The incremental strain changes from hori- 
zontal shortening to extension approximately midway 
up the ramp. Over the upper ramp hinge, J1 decreases 
and vJ$ increases, and the stress state returns to the 
yield surface, resulting in additional plastic strain. This 
second phase of plastic deformation is horizontal exten- 

sion, which is superposed on the earlier phase of hori- 
zontal shortening. As the particle moves over the upper 
flat, VJ; decreases and the stress state falls below the 
yield surface. Whereas the plastic deformation is dis- 
tinctly episodic, viscous strain accumulates continuously 
but at varying rates. A particle in the upper hanging wall 
(particle b; Fig. 5) displays a similar deformational 
history, but the J-space stress path fluctuates less. The 
magnitudes of both plastic and viscous strain in the 
hanging wall decrease with distance from the fault, and a 
greater proportion of the total strain is viscous higher in 
the hanging wall. 

In model B, with no viscous creep and the same plastic 
properties as viscous-plastic model A, the fold geometry 
(Fig. 6) is generally similar to model A. However, there 
is practically no footwall deformation in model B, and, 
consequently, the ramp shape remains relatively 
unchanged. J-space stress paths and strain histories in 
model B are also similar to model A (Fig. 7), although 
plastic strain and VJ; are consistently larger in model B. 

Model C has viscous creep only (Fig. 8). In order to 
prevent separation along the fault surface, a lower 
viscosity was used in this model than in viscous-plastic 
model A. The use of this lower viscosity does not change 
the general form of the stress paths or strain histories. 
The hanging-wall anticline has a lower amplitude and is 
more rounded than the folds of the viscous-plastic or 
plastic models. The stress paths are relatively smooth 
because there is no constraining plastic yield surface 
(Fig. 9). In both the upper and lower hanging wall, the 
stress paths are loops in J space. J, reaches a maximum 
above the ramp, whereas VJ; reaches maxima above 
the lower and upper ramp hinges. Strain accumulates 
relatively smoothly with time in both the upper and 
lower hanging wall. Because of the considerable layer- 
parallel shortening of the footwall forward of the ramp, 
neither particle reaches the upper flat. After a displace- 
ment of 2.5 km, particles a and b are only above the 
upper ramp hinge. 

Model D has the same hanging-wall material 
properties as viscous-plastic model A, but has a rigid 
footwall. This configuration eliminates shallowing and 
foreland translation of the ramp by footwall 
deformation, and allows the comparison of hanging-wall 
deformation above an undeformable vs a deformable 
footwall. The hanging-wall anticline of model D (Fig. 
10) is flat-topped in the lower hanging wall, rounded at 
higher levels, and more open than model A. Magnitudes 
of equivalent plastic strain are similar in models A and D 
above the upper flat, but are higher in the backlimb of 
model D due to the maintenance of the steep ramp. The 
distributions of viscous strain in models A and D are 
nearly identical. Instead of the footwall uplift below the 
upper flat in model A, there is separation along the fault 
in the same positions in model D. 

Layering and fault friction 

The two-layer model E has a strong footwall and 
lower hanging wall, a weak upper hanging wall, and a 
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Model A 

Fig. 3. Contours of (a) V’J; and (b) J, at displacement 2.5 km for uniform viscous-plastic model A 
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Model A 

Model A -V 
0.3 

E :i_ 0.1 
- 0.0 

Fig. 3. Deformed grids and c:mtours of (a) cquiwlent plastic strain and (b) equivalent viscous strain at displacements 0.5, 
I .S and 2.5 km for uniform viw)u+plastic model A. 
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6 
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Model B 

Model C 

10 

Model D 

Fig. 6. Deformed grid and contours of cquivalcnt plastic strain at displacement 7.15 km for plastic model B. 

Fig. 8. Deformed grid and contours of equivalent viscous strain at displaccmcnt 2.5 km for viscous model C. 

Fig. 10. Dcformcd grid and contour+ of cquivalcnt plastic strain at displacement 2.5 km for model 0. which has a viscous- 
plastic hanging wall and a rigid footwall. 
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Fig. 11. Deformed grids at displacement 2.5 km for (a) two-layer model E with fault friction coefficient puF = 0.01, 
(b) two-layer model F with/r,- = 0.3. and (c) model G with six layers in the hanging wall. In (a)-(c). wcakcr layers composed 
of material III arc stippled. (d) Model H with interlayer slip in the hanging wall. Contours arc the horizontal component of 

strain f,, (extension is positive). 
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Fig. 5. (a) Displacement paths for two particles a and b in the uniform viscous-plastic model A. Each time increment 
represents 25,000 years (10 model time steps). Solid parts of curves represent times in which the horizontal component of 
incremental strain is shortening and dashed parts represent incremental strains of horizontal extension. (b) Stress path in 
Jr - VJ; space for particle a. (c)Stress path for particle b. In(b) &(c), the dashed line is the initial plastic yield surface. and 
stresses are in MPa. (d) Equivalent plastic and viscous strains with time for particle a. (e) Equivalent plastic and viscous 
strains for particle b. In (d) & ( e , curves with markers are equivalent plastic strain, curves without markers are equivalent ) 

viscous strain, and solid and dashed parts of curves are the same as in (a). 

friction coefficient of 0.01 on the fault. Model F differs 
only by having a friction coefficient of 0.3 on the fault. 
No slip is allowed between the two layers in the hanging 
walls of these models. The deformed geometry of model 
E (Fig. lla) is similar to the uniform model A. However, 
shear strain is concentrated at the base of the weak layer 
on the limbs of the hanging-wall anticline and there is 
more layer-parallel shortening of the upper hanging wall 
in the backlimb. 

The hanging-wall anticline in model F (Fig. llb) has 
more layer-parallel shortening in the backlimb and 
greater asymmetry (Table 2) than model E. In the lower 
hanging wall, this asymmetry is the result of a steeper 
forelimb. In the upper hanging wall, the forelimb has a 
dip that is similar to model E, but layer-parallel shorten- 
ing causes the backlimb to have a shallower dip. The 
hanging wall above the upper flat is sheared, top to the 

foreland, due to the fault drag, and there is a concen- 
tration of strain at the base of the weak layer in the hinge 
of the leading syncline. There is more footwall defor- 
mation in model F than in model E, manifested as layer- 
parallel shortening beneath the ramp and layer-parallel 
extension beneath the lower flat. 

Multilayer model G has six alternating strong and 
weak layers, each 200 m thick. No slip is allowed 
between these layers. The gross fold geometry of model 
G is similar to that of single-layer model A. Strain is 
concentrated in the weak layers (Fig. llc), and the sense 
of shear on the limbs of the hanging-wall anticline is 
consistent with flexural-flow folding. As in model A, 
plastic strain accumulates as material passes over the 
ramp hinges. The final equivalent plastic strain distri- 
bution consists of bands of high strain in the weak layers. 
VJ; and Jr are highest in the strong layers. Top to the 
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Fig. 7. Stress paths in J1 - dJ’ 2 space for (a) particle a and (b) particle b (same initial coordinates as in Fig. 5) in the plastic 
model B. Equivalent plastic strain with time for (c) particle n and (d) particle b. 
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Fig 9. Stress paths in J, - -\/.l’ 2 space for (a) particle a and (b) particle b (same initial coordinates as in Fig. 5) in the viscous 
model C. Equivalent viscous strain with time for (c) particle a and (d) particle b. 
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foreland shear strain develops immediately beneath the 
ramp, and is concentrated in the weak layer. 

Interlayer slip 

Model H allows interlayer slip along three frictional 
surfaces within the hanging wall. The material proper- 
ties of the footwall and all the hanging-wall layers are the 
same as those in model A. The hanging-wall slip surfaces 
are spaced 300 m apart, and the slip surfaces and the 
fault all have ,& = 0.01. Where each interlayer slip 
surface intersects the edges of the model, it is pinned 
across the interface. Interlayer slip is concentrated on 
the limbs of the hanging-wall anticline, with shear senses 
consistent with flexural-slip folding (Fig. lld). Layer 
thicknesses remain nearly constant through the fold. 
Most of the displacement on the slip surfaces accumu- 
lates as they move over the ramp hinges. These surfaces 
slip top to the foreland over the lower ramp hinge, and 
top to the hinterland over the upper ramp hinge. On the 
lowest interlayer slip surface, which truncates against 
the fault, the slip is greater on the backlimb (maximum 
of -200 m) than on the forelimb. On the two higher slip 
surfaces, the maximum interlayer slips on the forelimb 
and backlimb are nearly equal. Relative to model A, the 
hanging-wall anticline has a lower amplitude and is more 
symmetric (Table 2). The anticline has a flat top in the 
lower hanging wall and becomes more rounded in the 
upper hanging wall. 

The slip surfaces divide the hanging wall into discrete 
layers, each of which develops a neutral surface. Layer- 
parallel extension develops in bands around the outer 
arcs of the hanging-wall anticline and, to a lesser extent, 
in the outer arcs of the leading and trailing synclines. 
Layer-parallel shortening develops in the inner arcs of 
hanging-wall folds, with higher magnitudes of shorten- 
ing in the leading and trailing synclines than in the 
anticline. Ji is highest in the inner arcs of the trailing 
syncline and hanging-wall anticline, and dJ$ is high in 
fold hinges and above the ramp hinges. 

DISCUSSION 

The finite-element models simulate both fold geom- 
etry and the distribution and timing of deformation in 
fault-bend folds. The fold geometries of the models can 
be compared with those of geometric models of fault- 
bend folds, which relate fold geometry to fault configur- 
ation (e.g. Suppe 1983, Jamison 1987). Although the 
geometric models generally use a kinked-hinge fold 
geometry, the angular relationships for a mode I fault- 
bend fold are fundamentally the same if the hinges are 
curved (Jamison 1987 and unpublished data). In the 
geometric models, the backlimb dip & (Fig. 1) of a 
fault-bend fold is equal to the ramp dip. In the finite- 
element models, the ramp dip is initially 26.5”, but 
decreases by a few degrees during the model evolution. 
The final maximum backlimb dips range from 19” to 26” 
(Table 2). The smallest backlimb dip occurs in the plastic 

--L Small Faults 

b 
- Stylolites 

1 Extension Fractures 

Fig. 12. Schematic drawing of (a) regions of viscous and plastic strain 
and layer-parallel shortening and extension in the models, and (b) the 

possible sequence of deformation mechanisms. 

model B, in which there is substantial separation along 
the fault (Fig. 6). The forelimb dip & of a kinked-hinge 
geometric model with a 26.5” ramp dip and constant bed 
thickness is 36” (Suppe 1983). In the geometric models, 
the forelimb dip depends only on the initial ramp geom- 
etry, and would not be affected by later shallowing of the 
ramp. Maximum forelimb dips in the finite-element 
models range from 29” to 39” (Table 2). Model C (Fig. 
8), with low hanging-wall strength, and model F (Fig. 
lib), with high fault friction, have the steepest forelimb 
dips. In addition, layer thicknesses are not constant in 
the hanging-wall anticlines of the finite-element models. 
For example, in model A (Fig. 3), there is -20% layer 
thickening in the hinge and -5% thinning in the fore- 
limb. According to the geometric models, layer thicken- 
ing in the hinge should increase the forelimb dip 
(Jamison, unpublished data), whereas thinning in the 
forelimb should decrease the forelimb dip (Jamison 
1987). The forelimb dip of model H (Fig. lld), with 
interlayer slip surfaces in the hanging wall, matches the 
geometric models more poorly than the forelimb dips of 
models without interlayer slip surfaces (Table 2), de- 
spite the relatively constant layer thicknesses in this 
model. In general, the limb dips of the geometric models 
are similar to those in the finite-element models, 
although fold geometries in the finite-element models 
are functions of material properties and fault friction in 
addition to ramp dip. 

If pressure-dependent plastic deformation simulates 
cataclasis and viscous deformation simulates pressure 
solution creep, then the results of our models can be 
used to infer a sequence of deformation mechanisms. 
The models without slip surfaces in the hanging wall 
simulate the following sequence of deformation for a 
particle moving over a ramp (Fig. 12a); (1) viscous 
shortening, (2) plastic and viscous shortening, (3) vis- 
cous shortening, (4) viscous extension, (5) plastic and 
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viscous extension, (6) viscous extension, and (7) viscous 
shortening. From these results, we infer the following 
sequence of deformation mechanisms (Fig. 12b): (1) 
transport-perpendicular stylolites, (2) mesoscopic thrust 
faults, transport-parallel extension fractures, and top to 
the foreland bedding-plane slip, (3) transport- 
perpendicular stylolites, (4) bedding-parallel stylolites, 
(5) mesoscopic normal faults, transport-perpendicular 
extension fractures, and top to the hinterland bedding- 
plane slip, (6) bedding-parallel stylolites, (7) transport- 
perpendicular stylolites. Kilsdonk & Wiltschko (1988), 
in a study of the ramp region of the Pine Mountain fault, 
recognized an early deformational phase characterized 
by mesoscopic thrust faults, transport-parallel extension 
fractures, and transport-perpendicular stylolites, which 
may correlate with our stages l-3. They also observe a 
later phase characterized by mesoscopic normal faults 
and transport-perpendicular extension fractures, which 
may correlate with our stage 5. Wiltschko et al. (1985) 
recognized early transport-perpendicular stylolites, 
which may correlate with our stage 1, and later 
transport-perpendicular extension fractures, meso- 
scopic faults and bedding-plane slip, which may corre- 
late with our stages 2 and 5. Thus, our model results are 
consistent with field observations, although the com- 
plete suite of deformational stages indicated by these 
models has not been recognized in the observational 
studies. 

In models without slip surfaces in the hanging wall, a 
particle moving over the ramp experiences shortening 
over the lower ramp hinge followed by extension over 
the upper ramp hinge and then by further shortening. 
This deformation history agrees with linear viscous flow 
models (Kilsdonk & Fletcher 1989). Superposed on the 
shortening and extension above ramp hinges is neutral- 
surface bending of the hanging wall, characterized by 
extension in outer arcs and shortening in inner arcs of 
folds. With the material properties used here, this 
neutral-surface bending is relatively minor in models 
without interlayer slip. Our models indicate the import- 
ance of layering and interlayer slip in determining the 
style of deformation, in agreement with previous studies 
of deformation at ramps (Serra 1977, Spang et al. 1981, 
Wiltschko 1981, Chester et al. 1991). The hanging-wall 
anticline is more symmetric and has a lower amplitude if 
the hanging wall contains interlayer slip surfaces. Strain 
in multilayer models is concentrated in the weak layers 
or taken up on discrete interlayer slip surfaces, espe- 
cially in the accommodation of shear strain on the limbs 
of the hanging-wall anticline. Unlike models with a 
pervasive anisotropy (Wiltschko 1981), layers between 
discrete slip surfaces undergo significant neutral-surface 
bending in our models. Thus, if interlayer slip is import- 
ant, the deformation sequence proposed above may be 
altered by small scale neutral-surface bending. The 
magnitude of frictional resistance along the fault, rela- 
tive to hanging-wall and footwall strengths, also influ- 
ences the fold geometry and strain in the hanging wall, in 
agreement with experimental rock models (Morse 1977, 
Chester et al. 1991) and linear viscous models (Berger & 

Johnson 1980). Higher frictional resistance leads to 
greater fold asymmetry, more layer-parallel shortening 
in the backlimb of the hanging-wall anticline, and more 
footwall deformation. 

In models that allow footwall deformation, movement 
of the hanging wall over the ramp produces significant 
deformation beneath the ramp. Interlayer slip in the 
hanging wall and low fault friction reduce this footwall 
deformation. Our models indicate that, in a viscous- 
plastic material, footwall deformation is dominated by 
the viscous component because of the high J1 beneath 
the ramp. This viscous deformation represents pressure 
solution creep in natural rock deformation. Although 
pressure solution creep has been recognized as a mech- 
anism of footwall deformation beneath natural ramps 
(Protzman & Mitra 1990, Evans & Neves 1992), there 
are no data on its importance relative to other mechan- 
isms. Early layer-parallel shortening by pressure solu- 
tion in thrust belts (e.g. Wiltschko et al. 1985) could be a 
result of this footwall deformation. In our models, the 
boundary condition of no vertical displacement on the 
base simulates a rigid basement and suppresses the 
development of a major footwall syncline, compared to 
the infinite half-space footwall in the model of Kilsdonk 
& Fletcher (1989), in which the footwall syncline has a 
shape similar to that of the hanging-wall anticline. In our 
models, variations in the amount and style of footwall 
deformation do not have a large effect on hanging-wall 
deformation. 

CONCLUSIONS 

We have used finite-element models with viscous and 
plastic material properties to simulate pressure solution 
creep and cataclasis, respectively, during the develop- 
ment of fault-bend folds. The relative activity of these 
competing processes is determined by the magnitude of 
the stress invariants J, and VJ;. In the models, VJi is 
highest above ramp hinges and below the ramp, whereas 
J1 is highest above and below the ramp. Plastic strain 
accumulates primarily above the ramp hinges. Viscous 
strain is more widely distributed and accumulates con- 
tinuously but at varying rates. Viscous deformation 
dominates above the ramp and flats, where plastic 
deformation is negligible. Because of the high J, below 
the ramp, footwall deformation is predominantly vis- 
cous. The accumulation of plastic strain in material as it 
moves over ramp hinges creates a band of high equival- 
ent plastic strain in the lower hanging wall. Hanging-wall 
material undergoes layer-parallel shortening on the 
lower flat and lower part of the ramp, extension on the 
upper part of the ramp and upper flat, and shortening on 
the upper flat, These changes in the dominance of plastic 
and viscous strain and layer-parallel shortening and 
extension during movement over a model ramp indicate 
a complex but predictable sequence of deformation 
mechanisms in natural fault-bend folds. In multilayer 
models, strain concentrates in the weak layers, espe- 
cially on the limbs of the hanging-wall anticline. In 
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models with slip surfaces in the hanging wall, the shear Johnson, A. M. & Berger, P. 1989. Kinematics of fault-bend folding. 

strain on fold limbs is accommodated by interlayer slip, Eng. Cd. 27,181-200. 

and layers between slip surfaces develop individual 
Kilsdonk, B. & Fletcher, R.,C. 1989. An analytical model of hanging- 

wall and footwall deformation at ramps on normal and thrust faults. 

neutral surfaces. The sense of slip on these surfaces Tecrcmophysics 163, 153-168. 

changes from top to the foreland over the lower ramp 
Kilsdonk, B. & Wiltschko, D. V. 1988. Deformation mechanisms in 

hinge to top to the hinterland over the upper ramp hinge. 
the southeastern ramp region of the Pine Mountain block, Tennes- 
see. Bull. geol. Sot. Am. 100,653-664. 
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